Problem Session #8

1) Calculate the change in the Helmholtz energy for the reversible isothermal compression of mole of an ideal gas from 100.0 L to 22.4 L. Assume that the temperature is 298 K.

2) Determine ΔG_r (25°C=298 K) for the following chemical reaction using both methods for determining ΔG_r , and show that they yield the same answer. Assume standard conditions.

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$$

	H ₂ (g)	O ₂ (g)	H ₂ O (I)
ΔH _f , kJ/mol	0	0	-285.83
S, J/mol.K	130.68	205.14	69.91
ΔG _f , kJ/mol	0	0	-237.13

3) Helium is expressed isothermally and reversibly at 100°C from a pressure of 2 bar to 10 bar. Calculate

- a) Q per mole
- b) W per mole
- c) $\Delta \bar{G}$
- d) $\Delta \bar{A}$
- e) ΔH
- f) ΔE
- g) $\Delta \bar{S}$

4) Toluene is vaporized at its boiling point, 111°C. The heat of vaporization at this temperature is 361.9 J.g⁻¹. For the vaporization of toluene, calculate

- a) W per mole
- b) Q per mole
- c) ΔH
- **d)** ΔE

- e) ΔG
- f) $\Delta \bar{S}$
- **5) a)** Liquid water at 100°C is in equilibrium with water vapor at 1 atm pressure. If the enthalpy change associated with the vaporization of liquid water at 100°C is $40.60 \text{ kJ.mol}^{-1}$, what are ΔG and ΔS ?
 - **b)** Suppose that water at 100°C is in contact with water vapor at 0.900 atm. Calculate ΔG and ΔS for the vaporization process.