Problem Session #4

1) The oxidation of glucose, $C_6H_{12}O_6$, is a basic metabolic process in all life. In cells, it is performed by a complex series of enzyme-catalyzed reactions. The overall reaction is

$$C_6H_{12}O_6$$
 (s) + $6O_2$ (g) \rightarrow $6CO_2$ (g) + $6H_2O$ (l)

If the standard enthalpy of formation of glucose is -1277 kJ/mole, what is the ΔH_r^0 for this process? The ΔH_f values for CO_2 (g) and H_2O (l) are -393.51 and -285.83 kJ/mole, respectively.

2) Combustion of ethanol in a constant- volume calorimeter produces 1364.34 kJ.mol $^{-1}$ at 25 °C. What is the value of ΔH_r^0 for the following combustion reaction?

$$C_2H_5OH(l) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l)$$

3) What are the standard enthalpy changes at 298.15 K and 2000 K for the following reaction?

$$CO_{2}(g) + C (graphite) \rightarrow 2 CO (g)$$

$$\Delta_{f}H^{0}(CO)(kJ.mol^{-1}) \qquad \Delta_{f}H^{0}(CO_{2})(kJ.mol^{-1})$$
298.15 K -110.527 -393.522
2000 K -118.896 -396.784

4) Calculate $\Delta H_r^{\ 0}$ for the hydrolysis of urea to give carbon dioxide and ammonia in aqueous solution:

$$\begin{split} &H_{2}NCONH_{2}~(aq) + H_{2}O~(l) \rightarrow ~CO_{2}~(aq) + 2~NH_{3}~(aq) \\ &l)~C~(graphite) + 2H_{2}~(g) + \frac{1}{2}~O_{2}~(g) + N_{2}~(g) \rightarrow ~H_{2}NCONH_{2}~(aq) \qquad \Delta_{f}H^{0} = -317.77~kJ.mol^{-1} \end{split}$$

2) $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$

 $\Delta_{\rm f} H^0 = -285.85 \text{ kJ.mol}^{-1}$

3) C (graphite) + O_2 (g) \rightarrow CO_2 (aq)

 $\Delta_{\rm f} H^0 = -413.80 \text{ kJ.mol}^{-1}$

$$4)\,\frac{1}{2}\,\mathrm{N}_{2}\,(\mathrm{g})+\frac{3}{2}\,\mathrm{H}_{2}\,(\mathrm{g})\,\rightarrow\mathrm{NH}_{3}\,(\mathrm{aq})$$

 $\Delta_{\rm f} H^0 = -80.71 \, \rm kJ.mol^{-1}$

5) The enthalpy changes in complete combustion of crytalline α -D-glucose and maltose at 298 K, with the formation of gaseous CO₂ and liquid H₂O, are:

$$\Delta_{c} H^{0}(kJ.mol^{-1})$$

$$\alpha - D - Glu \cos e, C_6 H_{12} O_6 (c)$$
 - 2809.1

Maltose, $C_{12}H_{22}O_{11}$ (c) -5645.5

Calculate the enthalpy change accompanying the conversion of 1 mol of cystalline glucose into crystalline maltose.

1)
$$C_6H_{12}O_6(c) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l)$$

 $\Delta_{c} H^{0} = -2809.1 \text{ kJ.mol}^{-1}$

2)
$$C_{12}H_{22}O_{11}(c) + 12O_2(g) \rightarrow 12CO_2(g) + 11H_2O(l)$$

 $\Delta_c H^0 = -5645.5 \text{ kJ.mol}^{-1}$

6) Calculate the ΔH^0 at 85°C for the reaction

$$Fe_2O_3(s) + 3H_2(g) \rightarrow 2Fe(s) + 3H_2O(l)$$

The data are: $\Delta H_{298}^{0} = -33.29 \text{ kJ.mol}^{-1}$ and

Substance	Fe ₂ O ₃ (s)	Fe (s)	H ₂ O (I)	H ₂ (g)
$C_p^{0}(J.K^{-1}.mol^{-1})$	103.8	25.1	75.3	28.8